Систем с иррациональным основанием, позволяющих записать любое натуральное число конечным количеством цифр, вообще говоря, бесконечно много. Например, система счисления с основанием, равным квадратному корню из двух. Если использовать лишь каждую вторую цифру (те, которые соответствуют чётным степеням основания), то ей можно пользоваться как обычной двоичной системой счисления:
10101_{\sqrt2} = 111_2
Точно так же в качестве основания нам подойдут квадратный корень из трёх, кубический корень из двух… Ну, вы поняли мысль. Систем счисления, в которых почти все целые числа будут записываться бесконечной дробью, также немало. Скажу по секрету,
спойлер
Строго говоря, этим свойством обладает любая система с трансцендентным основанием и достаточным набором цифр. В пи-ичной, е-ичной и даже в е-в-степени-пи-ичной системе счисления все натуральные числа, превосходящие единицу, будут записываться в виде бесконечной дроби.
Система Бергмана отличается и от первой, и от второй группы. В ней любое натуральное число, большее единицы, имеет ненулевое, но конечное количество цифр после запятой. Например:
2 = 10.01Ф
5 = 1000.1001Ф
42 = 10100010.00100001Ф
451 = 1010000001010.000100000101Ф
1984 = (см. эпиграф)
Просторечно выражаясь, это немного рвёт шаблон. Мы привыкли, что понятия «знаки после запятой» и «дробная часть» очевидным образом взаимосвязаны. Однако в фиеричной системе дробная часть может равняться нулю, а количество цифр после запятой при этом — не равняться. Более того, можно доказать, что если количество цифр после запятой равняется нулю, то во всех случаях кроме нуля и единицы ненулевая дробная часть неиллюзорно присутствует.
Тогда Пи будет целым числом! Лучше даже не начинать. Я и так после прочтения Вашего коммента поклялся, что больше никогда в жизни не буду мешать виски с пивом Все-таки виски — это не водка.
Комментарии
Теперь у меня только два пути — либо на РЕН ТВ, либо на Канатчикову дачу
Давно не мелькало настоящего юмора)))
Математики шутят — это просто замечательно)
Это да, это пять ;-))
а так статъя "занимательная", спасибо. ;-)
Сильно дали по репе
Хорошо, что живой
И вообще to be happy"
Как-то темой навеяло.
Далее просто вопрос к знающим тему:
Но все это как бы относится к десятичной системе счисления? Именно тут эта константа там иррациональная и т.д.
А если придумать другую систему, где все будет плясать не от 0 а от этого самого Пи? может там все намного интереснее получится?
10101_{\sqrt2} = 111_2
Точно так же в качестве основания нам подойдут квадратный корень из трёх, кубический корень из двух… Ну, вы поняли мысль. Систем счисления, в которых почти все целые числа будут записываться бесконечной дробью, также немало. Скажу по секрету,
спойлер
Строго говоря, этим свойством обладает любая система с трансцендентным основанием и достаточным набором цифр. В пи-ичной, е-ичной и даже в е-в-степени-пи-ичной системе счисления все натуральные числа, превосходящие единицу, будут записываться в виде бесконечной дроби.
Система Бергмана отличается и от первой, и от второй группы. В ней любое натуральное число, большее единицы, имеет ненулевое, но конечное количество цифр после запятой. Например:
2 = 10.01Ф
5 = 1000.1001Ф
42 = 10100010.00100001Ф
451 = 1010000001010.000100000101Ф
1984 = (см. эпиграф)
Просторечно выражаясь, это немного рвёт шаблон. Мы привыкли, что понятия «знаки после запятой» и «дробная часть» очевидным образом взаимосвязаны. Однако в фиеричной системе дробная часть может равняться нулю, а количество цифр после запятой при этом — не равняться. Более того, можно доказать, что если количество цифр после запятой равняется нулю, то во всех случаях кроме нуля и единицы ненулевая дробная часть неиллюзорно присутствует.
Далее — habrahabr.ru